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Background: A major challenge in clinical research is population heterogeneity and we need to consider 
both historical response and current condition of an individual in considering medical decision making. 
The idea of precise medicine cannot be fully accounted for in traditional randomized controlled trials. 
Reinforcement learning (RL) is developing rapidly and has found its way into various fields including clinical 
medicine in which RL is employed to find an optimal treatment strategy. The key idea of RL is to optimize 
the treatment policy depending on the current state and previous treatment history, which is consistent with 
the idea behind dynamic programming (DP). DP is a prototype of RL and can be implemented when the 
system dynamics can be fully quantified.
Methods: The present article aims to illustrate how to perform DP algorithm in a clinical scenario of Sepsis 
resuscitation. The state transition dynamics are constructed in the framework of Markov Decision Process. 
The state space is defined by mean arterial pressure (MAP) and lactate; the action space is comprised of fluid 
administration and vasopressor. The implementation of policy evaluation, policy improvement and iteration 
are explained with R code.
Results: the DP algorithm was able to find the optimal treatment policy depending on the current states 
and previous conditions. The iteration process converged at finite steps. We defined several functions such as 
nextStep(), policyEval() and policy_iteration() to implement the DP algorithm.
Conclusions: This article illustrates how DP can be used to solve a clinical problem. We show that DP 
is a potential useful tool to tailor treatment strategy to patients with different conditions/states. Potential 
audience of the paper are those who are interested in using DP for solving clinical problems with dynamic 
changing states.
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Introduction

Dynamic programming (DP) is both a mathematical 
optimization method and a computer programming 
method that solves problems by combining the solutions to 
subproblems (1). The Wikipedia definition states that “[DP 
is a] method for solving complex problems by breaking them down 
into simpler subproblems”. A dynamic-programming algorithm 
solves each subproblem just once and then saves its answer 
in a table, thereby avoiding the work of recomputing the 
answer every time it solves each subprogram. The idea of 
DP is to search a good policy (i.e., the policy to maximize 
the long-term reward) by using the value function. DP 
is closely related to the idea of reinforcement learning 
(RL) but builds on a known Markov Decision Process 
(MDP). The MDP comprises state, action and reward 
sets, denoted by  ,  , and , respectively. These terms 
can be explained in the context of clinical medicine. The 
state is constructed by features such as blood pressure, 
body temperature and laboratory tests in clinical medicine. 
The action refers to any treatment that the physician can 
prescribe. Reward refers is a quantity that is defined to 
quantify the goodness of a state transition. If the state is 
improving, e.g., transitioning from poor state to good 
state, a positive reward is usually assigned. The transition 
probability from one state to another under action a  
is denoted as ( ', | , )p s r s a ,  where s∈ ,  ( )a s∈ ,  r∈  
and  's +∈ . 's  is an instance of a successive state of s ,  
with its value updated at the last time step.

The article explains key concepts of DP in a clinical 
scenario and illustrates how DP can be used to solve clinical 
questions. The clinical question in this article is how to 
select an appropriate intervention to rescue patients with 
septic shock (2-4). Typically, a patient with septic shock 
should be rapidly managed with sepsis bundles in the 
emergency room. This bundle includes early antibiotic 
administration, fluid resuscitation, balance of oxygen 
supply and demand, and monitoring of urine output and 
serum lactate (5-7). Many states can be defined for septic 
shock and here we define the state space with mean arterial 
pressure (MAP) and lactate. The action space is comprised 
of vasopressor and fluid administration. The aim of the DP 
algorithm is to find an optimal policy at any states. In other 
words, the optimal treatment strategy can be quite different 
for patients with different states (e.g., high MAP and low 
lactate versus those with low MAP and low lactate). The 
adoption of optimal treatment strategy means the patient 
can get the best clinical outcome given his/her own current 
states. The idea of DP is well described in the RL bible (8), 

and we just illustrate this algorithm in a clinical scenario 
with R code (Figure 1).

Methods

Constructing a state space

The background knowledge for the clinical management 
of sepsis is explained in this section. Since the study did not 
involve real human subjects, ethical approval was waived for 
the study. Sepsis is an organ dysfunction syndrome caused 
by uncontrolled inflammation in response to infection. 
Septic shock is a severe form of sepsis and is potentially life-
threatening, which requires rapid response and initiation 
of resuscitation bundle. The key to successful treatment 
is to increase arterial blood pressure and restore effective 
circulatory volume (9). Physicians typically use vasopressor 
and fluid to rescue shock status (hypotension and 
hypoperfusion). Fluid can help to restore total blood volume 
to raise the blood pressure, and vasopressors can increase 
vascular tone thereby increasing the arterial blood pressure. 
Blood pressure is important for the maintenance of tissue 
perfusion. Here we construct a state space comprising MAP 
and lactate, with different combinations of the two variables 
relating to different pathological states. The action space is 
comprised of treatment options (i.e., fluid and vasopressor) 
that can be applied to a given patient.

To simplify the problem, the state space is constructed 
with a two dimensional 4×4 grid, with two feature variables 
of lactate and MAP. In other words, it is assumed that a 
patient’s condition can be fully captured with these two 
variables. The termination state is defined as Died and Alive 
at hospital discharge; note that patients with extremely low 
MAP and high lactate are more likely to die. The terminal 
states are irreversible (Figure 2). In real world setting, the 
state space can be constructed with higher dimensional 
features, but the idea to solve the problem is the same.

> gridSize = 4

> terminationStatesDie <- matrix(c(rep(1, 4),

+     2:4, 1:4, rep(4, 3)), nrow = 7)

> terminationStatesAlive <- c(4, 1)

> actions = c("vaso", "fluid", "both", "none")

> library(ggplot2)

> ggplot() + annotate("text", label = paste("Died",

+     "\n", apply(terminationStatesDie, MARGIN = 1,
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+         FUN = function(xx) {

+             paste("(", xx[1], ",", xx[2],

+                 ")", sep = "")

+         }), sep = ""), x = terminationStatesDie[,

+     2] * 3, y = terminationStatesDie[, 1] *

+     15, size = 6, colour = "red") + annotate("text",

+     label = c("Alive\n(4,1)"), x = terminationStatesAlive[2] *

+         3, y = terminationStatesAlive[1] *

+         15, size = 6, colour = "red") + annotate("text",

+     label = c(paste("(2,", 1:3, ")", sep = ""),

+         paste("(3,", 1:3, ")", sep = ""),

+         "(4,2)", "(4,3)"), x = rep(1:3, 3)[-7] *

+         3, y = rep(2:4, each = 3)[-9] * 15,

+     size = 6, colour = "black") + geom_hline(yintercept = 

c(0.5,

+     1.5, 2.5, 3.5, 4.5) * 15) + geom_vline(xintercept = c(0.5,

+     1.5, 2.5, 3.5, 4.5) * 3) + xlim(0.5 *

+     3, 4.5 * 3) + ylim(0.5 * 15, 4.5 * 15) +

+     labs(y = "Mean Arterial Blood Pressure (mmHg)",

+         x = "Lactate (mmol/L)") + scale_y_continuous(trans = 

"reverse")

## Scale for 'y' is already present. Adding another scale for 'y', 

which will

## replace the existing scale.

Transition probability

The finite MDP dictates that all components of the set 
S,A,R have the finite number of elements. The random 
variable Rt and St have well defined probability distributions 
conditional on previous states St−1 and actions At−1. For an 
instance of 's S∈  and r R∈ , the probability of the instance 
can be written as (8):

( ) ( )1 1,, || ,, − −′= = =′ = =t t t tS s R r S s Ap s r s a Pr a
	

[1]

In our example, there is nine possible next positions 
given a current position. The probability of each transition 
given a particular action a  is defined in the following list 
of transition matrices. Specifically, the TransPro object is 
a list with each of the component referring to a specific 
action, namely, vaso, fluid, both or none. Each component 
is a matrix of transition probability that defines the state 
transition probability under each action. The requirement 
of a known transition matrix for each action is also a 
limitation of the DP algorithm because the transition 
matrices are typically not known in reality.
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Figure 1 Workflow of the dynamic programming.
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Figure 2 Schematic illustration of the state space with a 4×4 grid. 
The red annotated cells represent the terminal states. The agent 
cannot leave the terminal states. The state space is defined by mean 
arterial blood pressure (y axis) and lactate (x axis). There are nine 
possible next states s' for a given non-terminal state s.
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> vasoX <- c(0.1, 0.7, 0.2)

> vasoY <- c(0.1, 0.8, 0.1)

> Mvaso <- sapply(vasoY, function(xx) vasoX *

+     xx)

> fluidX <- c(0.1, 0.6, 0.3)

> fluidY <- c(0.5, 0.2, 0.3)

> Mfluid <- sapply(fluidY, function(xx) fluidX *

+     xx)

> bothX <- c(0.05, 0.8, 0.15)

> bothY <- c(0.3, 0.1, 0.6)

> Mboth <- sapply(bothY, function(xx) bothX *

+     xx)

> noneX <- c(0.6, 0.2, 0.2)

> noneY <- c(0.1, 0.6, 0.3)

> Mnone <- sapply(noneY, function(xx) noneX *

+     xx)

> TransPro <- list(vaso = Mvaso, fluid = Mfluid,

+     both = Mboth, none = Mnone)

> TransPro$fluid

##      [,1] [,2] [,3]

## [1,] 0.05 0.02 0.03

## [2,] 0.30 0.12 0.18

## [3,] 0.15 0.06 0.09

The above output shows the transition probability under 
action fluid (i.e., we give fluid to a patient). The probability 
of transition from current state to the left cell (e.g., from 
(2,2) to (2,1) is 0.30; and the probability of staying in 
current position is 0.12. Note that the sum of all cells equals 
to 1. The action is called non-deterministic action because 
when one takes an action, the next position is a stochastic 
distribution of all possible positions.

> nextStep <- function(currentPosition, action,

+     moveInd) {

+     if (!action %in% actions) {

+         stop("Choose action value from vaso,fluid,both and 

none!")

+     }

+     if (sum(apply(terminationStatesDie, 1,

+         function(xx) identical(currentPosition,

+             xx)))) {

+         nextPosition = currentPosition

+         reward = -1

+         transProb <- 1/9

+     } else if (identical(currentPosition, terminationStatesAlive)) 

{

+         nextPosition = currentPosition

+         reward = 1

+         transProb <- 1/9

+     } else {

+         nextPosition <- currentPosition +

+             moveInd

+         reward = 0

+         transProb <- TransPro[[action]][which(c(-1,

+             1, 0) %in% moveInd[1]), which(c(-1,

+             1, 0) %in% moveInd[2])]

+     }

+     if (nextPosition[2] < 1 | nextPosition[1] >

+         gridSize) {

+         nextPosition = currentPosition

+     }

+     return(list(nextPosition = nextPosition,

+         reward = reward, transProb = transProb))

+ }

The above code defines the nextStep() function, which 
receives current position, action and move index as input; 
and output the next position, reward value and transition 
probability. The move index is a two elements numeric 
vector which defines the direction of movement for the next 
step. When the current position is the terminal state Died, it 
will stay in the current position with a reward of −1. Because 
there are nine possible move index, we assign the transition 
probability of 1/9 so that the sum of all transition probability 
for a given terminal state is 1 (i.e., we will loop over all 
possible movement index in the following functions). When 
the current position is the terminal state Alive, the next 
position remains unchanged and the reward is 1. Otherwise, 
the agent moves from current position to the next position by 
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a given move index. The reward for all non-terminal states is 
0. If the next position moves out of the grid, it returns to the 
current position (position unchanged). Now let’s experiment 
with the nextStep() function.

> nextStep(c(2, 2), "fluid", moveInd = c(-1,

+     -1))

## $nextPosition

## [1] 1 1

##

## $reward

## [1] 0

##

## $transProb

## [1] 0.05

> nextStep(c(2, 1), "fluid", moveInd = c(-1,

+     -1))

## $nextPosition

## [1] 2 1

##

## $reward

## [1] 0

##

## $transProb

## [1] 0.05

The above code shows two instances of movement in the 
grid. When the current state is (2,2) and the move index is 

( ) ( )( )1 , 1left upper− − , it moves to the position (1,1) with the 
reward of 0 and the transition probability is 0.05. Also note 
that a reward is added when the agent moves away from 
the corresponding cell. Thus, when moving away from 
(2,2) to (1,1), the agent receives reward 0 rather than −1. In 
contrast, when the current position is (2,1), the ( ),left upper  
movement will move out of the left limit and the next 
position remains unchanged.

Statistical analysis (policy evaluation)

Policy evaluation refers to the calculation of state-value 
function vπ under a given policy π. This is referred to as the 
prediction problem. If the dynamic system of MDP is well 

known, the state-value function can be written as (8):
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[2]

where Gt is the long term reward from time t, also known 
as the return. The expected return under policy π for state 
s is the state-value function. Also note that the returns at 
successive time steps (Gt,Gt+1,Gt+2) are related to each other 
by a reward R and discounting factor γ. s' is the next posion 
of s. The equation indicates that the current state-value (k 
step) is updated upon the last state-value (k−1 step) in the 
iterative process. A value table can be used to store state 
values. This table maps each state to real numbers. For 
instance, the state (2,1) can take a value 10, and the terminal 
state (1,1) takes 0. The value table is updated iteratively by 
using values obtained in the last step. Thus, we need two 
value tables, one is used to store current state values and the 
other is used to store previous state values. The update rule 
for state s can be written as (8):

( ) ( )
( ) ( ) ( )
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[3]

the subscript t refers to the time step. For example, if 
the current position at time t is St=s(2,2), the next position 
at time t+1 can be St+1=s(1,1) by a move index of (−1,−1). 
The subscript k refers to the iterative step that each one 
will update the state-values for all states once. If the MDP 
dynamics are known, the Expectation π  can be obtained by 
summing over all possible next states St+1. s' is an instance 
of St+1 for the state s. The total number of time step T can 
be very large (e.g., 5,000 in our default setting). The state-
value is guaranteed to converge if γ<1 in finite number of 
iterations.

> policyEval <- function(numIterations = 5000,

+     gamma = 0.95, valueMap) {

+     for (ii in 1:numIterations) {

+         delta = 0

+         for (jj in 1:(gridSize * gridSize)) {

+             weightedRewards = 0

+             state = as.numeric(states[jj,

+                 ])
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+             for (action in actions) {

+                 for (mm in 1:(3 * 3)) {

+                   moveInd <- moveIndMatrix[mm,

+                     ]

+                   NextStepReturn <- nextStep(state,

+                     action, moveInd)

+                   nextPosition <- NextStepReturn[[1]]

+                   reward <- NextStepReturn[[2]]

+                   transPro <- NextStepReturn[[3]]

+                   weightedRewards = weightedRewards +

+                     0.25 * transPro * (reward +

+                       gamma * valueMap[nextPosition[1],

+                         nextPosition[2]])

+                 }

+             }

+             valueMap1[state[1], state[2]] = weightedRewards

+             delta = max(delta, abs(weightedRewards -

+                 valueMap[state[1], state[2]]))

+         }

+         valueMap = valueMap1

+         if (delta < 0.01) {

+             break

+         }

+     }

+     return(valueMap)

+ }

The above code defines a policy evaluation function 
for a random policy, which takes a value map as input and 
output an updated value map. The value map is a 4×4 grid 
that each cell represents a value for that corresponding 
state. Now let’s execute the code with random policy. The 
treatment option is selected at random at any state S, thus 

( | ) 0.25a sπ =  for any state s (i.e., there are four treatment 
options in the example).

> valueMap <- matrix(rep(0, gridSize * gridSize),

+     nrow = gridSize)

> valueMap1 <- matrix(rep(0, gridSize * gridSize),

+     nrow = gridSize)

> states <- as.matrix(expand.grid(1:gridSize,

+     1:gridSize))

> moveIndMatrix <- as.matrix(expand.grid(c(-1,

+     1, 0), c(-1, 1, 0)))

> policyEval(valueMap = valueMap)

##            [,1]       [,2]      [,3]      [,4]

## [1,] -19.812121 -19.812121 -19.81212 -19.81212

## [2,]  -6.755552  -9.465815 -14.30679 -19.81212

## [3,]   1.513571  -4.112980 -13.19934 -19.81212

## [4,]  19.812121  -4.130786 -12.74781 -19.81212

The output of the policyEval() function is the state-value 
for the random policy. Note that each state is assigned a 
value. This value is the long-term expected return (sum of 
reward) of starting from the corresponding state. The state-
value has the lowest value at the terminal state of Died, and 
the highest value at the terminal state of Alive. The states 
approaching the Alive cell have greater values than those 
near the Died cells. From this state-value table, the optimal 
treatment at each state can be identified to maximize the 
long-term return. However, the state-value table will 
change if the policy changed.

State-value function for a specified policy

The above function returns a matrix of state-values 
corresponding to a random policy. It is also interesting 
to estimate state-value for a given policy. A given policy 
specifies a treatment option for each of the states.

> policy_evaluate <- function(states, PolicyInd,

+     gamma = 0.95, valueMap, numIterations = 5000) {

+     for (ii in 1:numIterations) {

+         delta = 0

+         for (jj in 1:(gridSize * gridSize)) {

+             weightedRewards = 0

+             state = as.numeric(states[jj,

+                 ])

+             if (length(unique(as.vector(PolicyInd))) ==

+                 1) {

+                 for (action in actions) {

+                   for (mm in 1:(3 * 3)) {
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+                     moveInd <- moveIndMatrix[mm,

+                       ]

+                     NextStepReturn <- nextStep(state,

+                       action, moveInd)

+                     nextPosition <- NextStepReturn[[1]]

+                     reward <- NextStepReturn[[2]]

+                     transPro <- NextStepReturn[[3]]

+                     weightedRewards = weightedRewards +

+                       0.25 * transPro * (reward +

+                         gamma * valueMap[nextPosition[1],

+                           nextPosition[2]])

+                   }

+                 }

+             } else {

+                 # use the current greedy policy

+                 action = PolicyInd[state[1],

+                   state[2]]

+                 for (mm in 1:(3 * 3)) {

+                   moveInd <- moveIndMatrix[mm,

+                     ]

+                   NextStepReturn <- nextStep(state,

+                     action, moveInd)

+                   nextPosition = NextStepReturn[[1]]

+                   reward = NextStepReturn[[2]]

+                   transPro <- NextStepReturn[[3]]

+                   weightedRewards = weightedRewards +

+                     transPro * (reward +

+                       gamma * valueMap[nextPosition[1],

+                         nextPosition[2]])

+                 }

+             }

+             valueMap1[state[1], state[2]] = weightedRewards

+             delta = max(delta, abs(weightedRewards -

+                 valueMap[state[1], state[2]]))

+         }

+         valueMap <- valueMap1

+         if (delta < 0.01) {

+             break

+         }

+     }

+     return(valueMap)

+     print(valueMap)

+ }

For example, we can define an arbitrary policy in a 4×4 
grid and calculates the state-value function.

> PolicyInd = matrix(rep("none", gridSize *

+     gridSize), nrow = gridSize)

> PolicyInd[c(2, 3), c(1, 4)] <- "vaso"

> PolicyInd[c(2, 3), c(2, 3)] <- "fluid"

> PolicyInd

##      [,1]   [,2]    [,3]    [,4]

## [1,] "none" "none"  "none"  "none"

## [2,] "vaso" "fluid" "fluid" "vaso"

## [3,] "vaso" "fluid" "fluid" "vaso"

## [4,] "none" "none"  "none"  "none"

> policy_evaluate(states, PolicyInd, valueMap = valueMap)

##            [,1]       [,2]       [,3]      [,4]

## [1,] -19.812121 -19.812121 -19.812121 -19.81212

## [2,]  -1.123072  -3.634555  -7.077458 -19.81212

## [3,]  -1.311871   2.514287  -8.215748 -19.81212

## [4,]  19.812121  -4.842859 -13.785760 -19.81212

The state-values of the current policy is different from 
that of the random policy. But the values at terminal states 
are all the same because actions have no effect on terminal 
states.

Results

Policy improvement

The purpose of computing the state-value function is to 
find a better policy. The state-action value function is 
used to address this problem. This value can be thought of 
selecting a in s and following policy π thereafter.
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If ( ) ( ),q s a v sπ π≥ , it will be better to select a  in s than 
follow the policy π all the time. The policy improvement 
theorem is described as follows in Eq. [5]. Suppose there are 
two deterministic policies π1 and π2 such that for all s S∈ ,  

( )( ) ( )
1 12,q s s v sπ ππ ≥ , then π2 is better than or equal to π1. 

The greedy policy can be the policy to maximize the state-
action value at each iterative step.
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[5]

The greedy policy takes the action that maximize the q 
value at short time, but it is not necessarily the best action in 
the long run. The greedy policy for each state under a given 
state-value table can be implemented with the following 

_ ()greedify policy  function. Note that this function will not 
change the state-value table. It returns an updated policy 
for one state. Then the _ ()improve policy  function improves 
policy over all states, except for the terminal states.

> # Compute the best action in each state

> greedify_policy <- function(state, PolicyInd,

+     gamma = 0.95, valueMap) {

+     q_values <- rep(0, length(actions))

+     idx = 1

+     for (action in actions) {

+         for (mm in 1:(3 * 3)) {

+             moveInd <- moveIndMatrix[mm,

+                 ]

+             NextStepReturn <- nextStep(state,

+                 action, moveInd)

+             nextPosition = NextStepReturn[[1]]

+             reward = NextStepReturn[[2]]

+             transPro <- NextStepReturn[[3]]

+             q_values[idx] = q_values[idx] +

+                 transPro * (reward + gamma *

+                   valueMap[nextPosition[1],

+                     nextPosition][2])

+         }

+         idx = idx + 1

+     }

+     # Find the index of the action for which

+     # the q_value is

+     indmax = which(q_values == max(q_values))

+     PolicyInd[state[1], state[2]] = actions[indmax]

+     return(PolicyInd)

+ }

>

> improve_policy <- function(PolicyInd, valueMap,

+     gamma = 0.95) {

+     policy_stable = TRUE

+     for (jj in c(2, 3, 6:8, 10:12)) {

+         state = as.numeric(states[jj, ])

+         old <- PolicyInd[state[1], state[2]]

+         # Greedify policy for state

+         PolicyInd <- greedify_policy(state,

+             PolicyInd, gamma, valueMap)

+         if (!identical(PolicyInd[state[1],

+             state[2]], old)) {

+             policy_stable = FALSE

+         }

+     }

+     return(list(PolicyInd, policy_stable))

+ }

Let’s see an example to better understand the above two 
functions.

> # The current policy

> PolicyInd

##      [,1]   [,2]    [,3]    [,4]

## [1,] "none" "none"  "none"  "none"

## [2,] "vaso" "fluid" "fluid" "vaso"

## [3,] "vaso" "fluid" "fluid" "vaso"

## [4,] "none" "none"  "none"  "none"

> valueMapExample <- policy_evaluate(states,

+     PolicyInd, gamma = 0.95, valueMap, numIterations = 5000)

> valueMapExample
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##            [,1]       [,2]       [,3]      [,4]

## [1,] -19.812121 -19.812121 -19.812121 -19.81212

## [2,]  -1.123072  -3.634555  -7.077458 -19.81212

## [3,]  -1.311871   2.514287  -8.215748 -19.81212

## [4,]  19.812121  -4.842859 -13.785760 -19.81212

> improve_policy(PolicyInd, valueMap = valueMapExample)

## [[1]]

##      [,1]   [,2]    [,3]    [,4]

## [1,] "none" "none"  "none"  "none"

## [2,] "vaso" "both"  "both"  "vaso"

## [3,] "both" "fluid" "fluid" "vaso"

## [4,] "none" "fluid" "fluid" "none"

##

## [[2]]

## [1] FALSE

The results show that the updated greedy policy is 
different from the initial policy. For example, the initial 
policy adopts “fluid” intervention in state (2,2), while the 
update policy adopts “both” intervention in this state.

Policy iteration

The purpose of policy iteration is to iteratively improve the 
policy π given the constantly updating state-value tables vπ. 
The process of the policy iteration can be written as:

	 0 10 1 2 * *π ππ π π π→ → → → → → →

I I IE E E E
v v v 	

[6]

The policy evaluation and improvement intersect 
with each other and the algorithm can finally achieve 
a converged optimal policy *π  and value function *v .  
The policy iteration process can be implemented with 
the following code. Except for the first policy evaluation 
which starts from an initial value map with all 0 input, each 
subsequent policy evaluation is started from the value map 
of the previous policy.

> policy_iteration <- function(gamma = 0.95,

+     theta) {

+     valueMap = matrix(rep(0, gridSize * gridSize),

+         nrow = gridSize)

+     PolicyInd = matrix(rep("none", gridSize *

+         gridSize), nrow = gridSize)

+     policy_stable = FALSE

+     while (!policy_stable) {

+         valueMap = policy_evaluate(states,

+             PolicyInd, valueMap = valueMap)

+         ImpPolicy <- improve_policy(PolicyInd,

+             valueMap)

+         PolicyInd = ImpPolicy[[1]]

+         policy_stable = ImpPolicy[[2]]

+     }

+     return(list(valueMap, PolicyInd))

+ }

> theta = 0.1

> policyIter <- policy_iteration(theta)

> policyIter

## [[1]]

##           [,1]      [,2]       [,3]      [,4]

## [1,] -19.97184 -19.97184 -19.971839 -19.97184

## [2,]  12.94852  10.40723   2.198744 -19.97184

## [3,]  16.89435  12.71012   3.121192 -19.97184

## [4,]  19.97184  12.24205   2.654893 -19.97184

##

## [[2]]

##      [,1]   [,2]    [,3]    [,4]

## [1,] "none" "none"  "none"  "none"

## [2,] "both" "both"  "both"  "none"

## [3,] "both" "fluid" "both"  "none"

## [4,] "none" "fluid" "fluid" "none"

The above output shows the optimal value function *v  
and optimal policy *π . At the terminal states, the initial 
“none” treatment is not changed during policy iteration. 
The optimal treatment strategy such as “both” and “fluid” 
are employed in other non-terminal states.

Discussion

This article illustrates how DP can be used to solve a 
clinical problem. We show that DP is a potential useful 
tool to tailor treatment strategy to patients with different 
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conditions/states. The key concepts of DP include policy 
evaluation, policy improvement and policy iteration. 
The final output of the DP is an optimal policy that 
maximizes the final outcome. The complexity of septic 
shock is the rapidly changing states over the disease 
course (10). Clinicians need to make rapid decisions 
to these changing states. There have been numerous 
clinical practice guidelines for the management of septic 
shock, but most of these guidelines provide uniform 
recommendation for all septic shock patients, failing to 
account for the heterogeneity of individual patients (11-13).  
On the other hand, many literatures demonstrated that 
sepsis is a heterogeneous syndrome that the One-size-fit-
all paradigm is not working perfectly (14-17). Thus, it is 
mandatory to utilize the concept of precision medicine for 
the management of septic shock. The potential implications 
in clinical practice of the DP algorithm are that it can help 
to tailor resuscitation strategy conditional on patients’ 
current state. Remember that all states are assigned a 
value to indicate next appropriate action to take. However, 
DP is not widely used in real world setting because of its 
computational complexity. In reality, the state space may 
be formed by hundreds of features that the size of the 
feature space is intractable. Another limitation of DP is 
the requirement of a known MDP, which is usually not the 
case in clinical researches. Thus, we need more advanced 
methods such as deep RL, or other methods based on 
temporal difference. However, the key concept of RL can 
be captured by DP, as illustrated in this article.

Conclusions

This article illustrates how DP can be used to solve a 
clinical problem. We show that DP is a potential useful 
tool to tailor treatment strategy to patients with different 
conditions/states. Potential audience of the paper are those 
who are interested in using DP for solving clinical problems 
with dynamic changing states.
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