
© Annals of Palliative Medicine. All rights reserved. Ann Palliat Med 2021;10(4):3715-3725 | http://dx.doi.org/10.21037/apm-20-2084

Original Article

Dynamic programming for solving a simulated clinical scenario of
sepsis resuscitation

Zhongheng Zhang1,2#, Xiaodian Zhang2#, Shenhong Gu2#, Xiaoqing Xu2, Wei Jiang2, Chuanzhu Lv2,
Shaojiang Zheng2

1Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; 2Key Laboratory

of Emergency and Trauma of Ministry of Education, Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, The First

Affiliated Hospital of Hainan Medical University, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, Hainan

Medical University, Haikou, China

Contributions: (I) Conception and design: Z Zhang, S Zheng; (II) Administrative support: C Lv, S Zheng; (III) Provision of study materials or patients:

C Lv, X Zhang, S Gu, X Xu; (IV) Collection and assembly of data: Z Zhang, S Gu, X Xu; (V) Data analysis and interpretation: Z Zhang, X Zhang,

W Jiang, S Zheng; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Shaojiang Zheng. The First Affiliated Hospital of Hainan Medical University, Research Unit of Island Emergency Medicine of

Chinese Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China. Email: zhengsj2008@163.com; Chuanzhu Lv. The First

Affiliated Hospital of Hainan Medical University, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, Hainan

Medical University, Haikou 571199, China. Email: lyuchuanzhu@hainmc.edu.cn; Zhongheng Zhang. 3#, East Qingchun Road, Hangzhou 310016,

China. Email: zh_zhang1984@zju.edu.cn.

Background: A major challenge in clinical research is population heterogeneity and we need to consider
both historical response and current condition of an individual in considering medical decision making.
The idea of precise medicine cannot be fully accounted for in traditional randomized controlled trials.
Reinforcement learning (RL) is developing rapidly and has found its way into various fields including clinical
medicine in which RL is employed to find an optimal treatment strategy. The key idea of RL is to optimize
the treatment policy depending on the current state and previous treatment history, which is consistent with
the idea behind dynamic programming (DP). DP is a prototype of RL and can be implemented when the
system dynamics can be fully quantified.
Methods: The present article aims to illustrate how to perform DP algorithm in a clinical scenario of Sepsis
resuscitation. The state transition dynamics are constructed in the framework of Markov Decision Process.
The state space is defined by mean arterial pressure (MAP) and lactate; the action space is comprised of fluid
administration and vasopressor. The implementation of policy evaluation, policy improvement and iteration
are explained with R code.
Results: the DP algorithm was able to find the optimal treatment policy depending on the current states
and previous conditions. The iteration process converged at finite steps. We defined several functions such as
nextStep(), policyEval() and policy_iteration() to implement the DP algorithm.
Conclusions: This article illustrates how DP can be used to solve a clinical problem. We show that DP
is a potential useful tool to tailor treatment strategy to patients with different conditions/states. Potential
audience of the paper are those who are interested in using DP for solving clinical problems with dynamic
changing states.

Keywords: Dynamic programming (DP); sepsis; Markov decision process; reinforcement learning (RL)

Submitted Oct 22, 2020. Accepted for publication Dec 31, 2020.

doi: 10.21037/apm-20-2084

View this article at: http://dx.doi.org/10.21037/apm-20-2084

3725

https://crossmark.crossref.org/dialog/?doi=10.21037/apm-20-2084

3716 Zhang et al. DP for sepsis resuscitation

© Annals of Palliative Medicine. All rights reserved. Ann Palliat Med 2021;10(4):3715-3725 | http://dx.doi.org/10.21037/apm-20-2084

Introduction

Dynamic programming (DP) is both a mathematical
optimization method and a computer programming
method that solves problems by combining the solutions to
subproblems (1). The Wikipedia definition states that “[DP
is a] method for solving complex problems by breaking them down
into simpler subproblems”. A dynamic-programming algorithm
solves each subproblem just once and then saves its answer
in a table, thereby avoiding the work of recomputing the
answer every time it solves each subprogram. The idea of
DP is to search a good policy (i.e., the policy to maximize
the long-term reward) by using the value function. DP
is closely related to the idea of reinforcement learning
(RL) but builds on a known Markov Decision Process
(MDP). The MDP comprises state, action and reward
sets, denoted by  ,  , and , respectively. These terms
can be explained in the context of clinical medicine. The
state is constructed by features such as blood pressure,
body temperature and laboratory tests in clinical medicine.
The action refers to any treatment that the physician can
prescribe. Reward refers is a quantity that is defined to
quantify the goodness of a state transition. If the state is
improving, e.g., transitioning from poor state to good
state, a positive reward is usually assigned. The transition
probability from one state to another under action a
is denoted as (', | ,)p s r s a , where s∈ , ()a s∈ , r∈
and 's +∈ . 's is an instance of a successive state of s ,
with its value updated at the last time step.

The article explains key concepts of DP in a clinical
scenario and illustrates how DP can be used to solve clinical
questions. The clinical question in this article is how to
select an appropriate intervention to rescue patients with
septic shock (2-4). Typically, a patient with septic shock
should be rapidly managed with sepsis bundles in the
emergency room. This bundle includes early antibiotic
administration, fluid resuscitation, balance of oxygen
supply and demand, and monitoring of urine output and
serum lactate (5-7). Many states can be defined for septic
shock and here we define the state space with mean arterial
pressure (MAP) and lactate. The action space is comprised
of vasopressor and fluid administration. The aim of the DP
algorithm is to find an optimal policy at any states. In other
words, the optimal treatment strategy can be quite different
for patients with different states (e.g., high MAP and low
lactate versus those with low MAP and low lactate). The
adoption of optimal treatment strategy means the patient
can get the best clinical outcome given his/her own current
states. The idea of DP is well described in the RL bible (8),

and we just illustrate this algorithm in a clinical scenario
with R code (Figure 1).

Methods

Constructing a state space

The background knowledge for the clinical management
of sepsis is explained in this section. Since the study did not
involve real human subjects, ethical approval was waived for
the study. Sepsis is an organ dysfunction syndrome caused
by uncontrolled inflammation in response to infection.
Septic shock is a severe form of sepsis and is potentially life-
threatening, which requires rapid response and initiation
of resuscitation bundle. The key to successful treatment
is to increase arterial blood pressure and restore effective
circulatory volume (9). Physicians typically use vasopressor
and fluid to rescue shock status (hypotension and
hypoperfusion). Fluid can help to restore total blood volume
to raise the blood pressure, and vasopressors can increase
vascular tone thereby increasing the arterial blood pressure.
Blood pressure is important for the maintenance of tissue
perfusion. Here we construct a state space comprising MAP
and lactate, with different combinations of the two variables
relating to different pathological states. The action space is
comprised of treatment options (i.e., fluid and vasopressor)
that can be applied to a given patient.

To simplify the problem, the state space is constructed
with a two dimensional 4×4 grid, with two feature variables
of lactate and MAP. In other words, it is assumed that a
patient’s condition can be fully captured with these two
variables. The termination state is defined as Died and Alive
at hospital discharge; note that patients with extremely low
MAP and high lactate are more likely to die. The terminal
states are irreversible (Figure 2). In real world setting, the
state space can be constructed with higher dimensional
features, but the idea to solve the problem is the same.

> gridSize = 4

> terminationStatesDie <- matrix(c(rep(1, 4),

+ 2:4, 1:4, rep(4, 3)), nrow = 7)

> terminationStatesAlive <- c(4, 1)

> actions = c("vaso", "fluid", "both", "none")

> library(ggplot2)

> ggplot() + annotate("text", label = paste("Died",

+ "\n", apply(terminationStatesDie, MARGIN = 1,

3717Annals of Palliative Medicine, Vol 10, No 4 April 2021

© Annals of Palliative Medicine. All rights reserved. Ann Palliat Med 2021;10(4):3715-3725 | http://dx.doi.org/10.21037/apm-20-2084

+ FUN = function(xx) {

+ paste("(", xx[1], ",", xx[2],

+ ")", sep = "")

+ }), sep = ""), x = terminationStatesDie[,

+ 2] * 3, y = terminationStatesDie[, 1] *

+ 15, size = 6, colour = "red") + annotate("text",

+ label = c("Alive\n(4,1)"), x = terminationStatesAlive[2] *

+ 3, y = terminationStatesAlive[1] *

+ 15, size = 6, colour = "red") + annotate("text",

+ label = c(paste("(2,", 1:3, ")", sep = ""),

+ paste("(3,", 1:3, ")", sep = ""),

+ "(4,2)", "(4,3)"), x = rep(1:3, 3)[-7] *

+ 3, y = rep(2:4, each = 3)[-9] * 15,

+ size = 6, colour = "black") + geom_hline(yintercept =

c(0.5,

+ 1.5, 2.5, 3.5, 4.5) * 15) + geom_vline(xintercept = c(0.5,

+ 1.5, 2.5, 3.5, 4.5) * 3) + xlim(0.5 *

+ 3, 4.5 * 3) + ylim(0.5 * 15, 4.5 * 15) +

+ labs(y = "Mean Arterial Blood Pressure (mmHg)",

+ x = "Lactate (mmol/L)") + scale_y_continuous(trans =

"reverse")

Scale for 'y' is already present. Adding another scale for 'y',

which will

replace the existing scale.

Transition probability

The finite MDP dictates that all components of the set
S,A,R have the finite number of elements. The random
variable Rt and St have well defined probability distributions
conditional on previous states St−1 and actions At−1. For an
instance of 's S∈ and r R∈ , the probability of the instance
can be written as (8):

() ()1 1,, || ,, − −′= = =′ = =t t t tS s R r S s Ap s r s a Pr a
	

[1]

In our example, there is nine possible next positions
given a current position. The probability of each transition
given a particular action a is defined in the following list
of transition matrices. Specifically, the TransPro object is
a list with each of the component referring to a specific
action, namely, vaso, fluid, both or none. Each component
is a matrix of transition probability that defines the state
transition probability under each action. The requirement
of a known transition matrix for each action is also a
limitation of the DP algorithm because the transition
matrices are typically not known in reality.

> # non-deterministic action

Policy improvement

State-value function

Policy evaluation

P
ol

ic
y

ite
ra

tio
n

Markov decision
process

Defining transition
probability

Constructing a state space

Figure 1 Workflow of the dynamic programming.

5 10
Lactate (mmol/L)

20

40

60

M
ea

n
ar

te
ria

l b
lo

od
 p

re
ss

ur
e

(m
m

H
g)

Figure 2 Schematic illustration of the state space with a 4×4 grid.
The red annotated cells represent the terminal states. The agent
cannot leave the terminal states. The state space is defined by mean
arterial blood pressure (y axis) and lactate (x axis). There are nine
possible next states s' for a given non-terminal state s.

3718 Zhang et al. DP for sepsis resuscitation

© Annals of Palliative Medicine. All rights reserved. Ann Palliat Med 2021;10(4):3715-3725 | http://dx.doi.org/10.21037/apm-20-2084

> vasoX <- c(0.1, 0.7, 0.2)

> vasoY <- c(0.1, 0.8, 0.1)

> Mvaso <- sapply(vasoY, function(xx) vasoX *

+ xx)

> fluidX <- c(0.1, 0.6, 0.3)

> fluidY <- c(0.5, 0.2, 0.3)

> Mfluid <- sapply(fluidY, function(xx) fluidX *

+ xx)

> bothX <- c(0.05, 0.8, 0.15)

> bothY <- c(0.3, 0.1, 0.6)

> Mboth <- sapply(bothY, function(xx) bothX *

+ xx)

> noneX <- c(0.6, 0.2, 0.2)

> noneY <- c(0.1, 0.6, 0.3)

> Mnone <- sapply(noneY, function(xx) noneX *

+ xx)

> TransPro <- list(vaso = Mvaso, fluid = Mfluid,

+ both = Mboth, none = Mnone)

> TransPro$fluid

[,1] [,2] [,3]

[1,] 0.05 0.02 0.03

[2,] 0.30 0.12 0.18

[3,] 0.15 0.06 0.09

The above output shows the transition probability under
action fluid (i.e., we give fluid to a patient). The probability
of transition from current state to the left cell (e.g., from
(2,2) to (2,1) is 0.30; and the probability of staying in
current position is 0.12. Note that the sum of all cells equals
to 1. The action is called non-deterministic action because
when one takes an action, the next position is a stochastic
distribution of all possible positions.

> nextStep <- function(currentPosition, action,

+ moveInd) {

+ if (!action %in% actions) {

+ stop("Choose action value from vaso,fluid,both and

none!")

+ }

+ if (sum(apply(terminationStatesDie, 1,

+ function(xx) identical(currentPosition,

+ xx)))) {

+ nextPosition = currentPosition

+ reward = -1

+ transProb <- 1/9

+ } else if (identical(currentPosition, terminationStatesAlive))

{

+ nextPosition = currentPosition

+ reward = 1

+ transProb <- 1/9

+ } else {

+ nextPosition <- currentPosition +

+ moveInd

+ reward = 0

+ transProb <- TransPro[[action]][which(c(-1,

+ 1, 0) %in% moveInd[1]), which(c(-1,

+ 1, 0) %in% moveInd[2])]

+ }

+ if (nextPosition[2] < 1 | nextPosition[1] >

+ gridSize) {

+ nextPosition = currentPosition

+ }

+ return(list(nextPosition = nextPosition,

+ reward = reward, transProb = transProb))

+ }

The above code defines the nextStep() function, which
receives current position, action and move index as input;
and output the next position, reward value and transition
probability. The move index is a two elements numeric
vector which defines the direction of movement for the next
step. When the current position is the terminal state Died, it
will stay in the current position with a reward of −1. Because
there are nine possible move index, we assign the transition
probability of 1/9 so that the sum of all transition probability
for a given terminal state is 1 (i.e., we will loop over all
possible movement index in the following functions). When
the current position is the terminal state Alive, the next
position remains unchanged and the reward is 1. Otherwise,
the agent moves from current position to the next position by

3719Annals of Palliative Medicine, Vol 10, No 4 April 2021

© Annals of Palliative Medicine. All rights reserved. Ann Palliat Med 2021;10(4):3715-3725 | http://dx.doi.org/10.21037/apm-20-2084

a given move index. The reward for all non-terminal states is
0. If the next position moves out of the grid, it returns to the
current position (position unchanged). Now let’s experiment
with the nextStep() function.

> nextStep(c(2, 2), "fluid", moveInd = c(-1,

+ -1))

$nextPosition

[1] 1 1

##

$reward

[1] 0

##

$transProb

[1] 0.05

> nextStep(c(2, 1), "fluid", moveInd = c(-1,

+ -1))

$nextPosition

[1] 2 1

##

$reward

[1] 0

##

$transProb

[1] 0.05

The above code shows two instances of movement in the
grid. When the current state is (2,2) and the move index is

() ()()1 , 1left upper− − , it moves to the position (1,1) with the
reward of 0 and the transition probability is 0.05. Also note
that a reward is added when the agent moves away from
the corresponding cell. Thus, when moving away from
(2,2) to (1,1), the agent receives reward 0 rather than −1. In
contrast, when the current position is (2,1), the (),left upper
movement will move out of the left limit and the next
position remains unchanged.

Statistical analysis (policy evaluation)

Policy evaluation refers to the calculation of state-value
function vπ under a given policy π. This is referred to as the
prediction problem. If the dynamic system of MDP is well

known, the state-value function can be written as (8):

() []
[]

()
() () ()

1

,

1

1 1

,

|

|

|

|| ,

π

π

π π

π

π

γ

γ

π γ

+ +

+

′

+

=

= + =

 

=

′ ′ +

= + = 
= ∑∑

t t

t t t

t t

s

t

a r

G S s

R G S s

R v S S s

v s

p s r s a r va ss






	

[2]

where Gt is the long term reward from time t, also known
as the return. The expected return under policy π for state
s is the state-value function. Also note that the returns at
successive time steps (Gt,Gt+1,Gt+2) are related to each other
by a reward R and discounting factor γ. s' is the next posion
of s. The equation indicates that the current state-value (k
step) is updated upon the last state-value (k−1 step) in the
iterative process. A value table can be used to store state
values. This table maps each state to real numbers. For
instance, the state (2,1) can take a value 10, and the terminal
state (1,1) takes 0. The value table is updated iteratively by
using values obtained in the last step. Thus, we need two
value tables, one is used to store current state values and the
other is used to store previous state values. The update rule
for state s can be written as (8):

() ()
() () ()

1

,

11

, || ,

|π γ

π γ

+

′

+ + + = =

′ ′ + = ∑∑
t k t t

a

k

ks r

v s

p s r s a r v s

R v S S s

a s



	

[3]

the subscript t refers to the time step. For example, if
the current position at time t is St=s(2,2), the next position
at time t+1 can be St+1=s(1,1) by a move index of (−1,−1).
The subscript k refers to the iterative step that each one
will update the state-values for all states once. If the MDP
dynamics are known, the Expectation π can be obtained by
summing over all possible next states St+1. s' is an instance
of St+1 for the state s. The total number of time step T can
be very large (e.g., 5,000 in our default setting). The state-
value is guaranteed to converge if γ<1 in finite number of
iterations.

> policyEval <- function(numIterations = 5000,

+ gamma = 0.95, valueMap) {

+ for (ii in 1:numIterations) {

+ delta = 0

+ for (jj in 1:(gridSize * gridSize)) {

+ weightedRewards = 0

+ state = as.numeric(states[jj,

+])

3720 Zhang et al. DP for sepsis resuscitation

© Annals of Palliative Medicine. All rights reserved. Ann Palliat Med 2021;10(4):3715-3725 | http://dx.doi.org/10.21037/apm-20-2084

+ for (action in actions) {

+ for (mm in 1:(3 * 3)) {

+ moveInd <- moveIndMatrix[mm,

+]

+ NextStepReturn <- nextStep(state,

+ action, moveInd)

+ nextPosition <- NextStepReturn[[1]]

+ reward <- NextStepReturn[[2]]

+ transPro <- NextStepReturn[[3]]

+ weightedRewards = weightedRewards +

+ 0.25 * transPro * (reward +

+ gamma * valueMap[nextPosition[1],

+ nextPosition[2]])

+ }

+ }

+ valueMap1[state[1], state[2]] = weightedRewards

+ delta = max(delta, abs(weightedRewards -

+ valueMap[state[1], state[2]]))

+ }

+ valueMap = valueMap1

+ if (delta < 0.01) {

+ break

+ }

+ }

+ return(valueMap)

+ }

The above code defines a policy evaluation function
for a random policy, which takes a value map as input and
output an updated value map. The value map is a 4×4 grid
that each cell represents a value for that corresponding
state. Now let’s execute the code with random policy. The
treatment option is selected at random at any state S, thus

(|) 0.25a sπ = for any state s (i.e., there are four treatment
options in the example).

> valueMap <- matrix(rep(0, gridSize * gridSize),

+ nrow = gridSize)

> valueMap1 <- matrix(rep(0, gridSize * gridSize),

+ nrow = gridSize)

> states <- as.matrix(expand.grid(1:gridSize,

+ 1:gridSize))

> moveIndMatrix <- as.matrix(expand.grid(c(-1,

+ 1, 0), c(-1, 1, 0)))

> policyEval(valueMap = valueMap)

[,1] [,2] [,3] [,4]

[1,] -19.812121 -19.812121 -19.81212 -19.81212

[2,] -6.755552 -9.465815 -14.30679 -19.81212

[3,] 1.513571 -4.112980 -13.19934 -19.81212

[4,] 19.812121 -4.130786 -12.74781 -19.81212

The output of the policyEval() function is the state-value
for the random policy. Note that each state is assigned a
value. This value is the long-term expected return (sum of
reward) of starting from the corresponding state. The state-
value has the lowest value at the terminal state of Died, and
the highest value at the terminal state of Alive. The states
approaching the Alive cell have greater values than those
near the Died cells. From this state-value table, the optimal
treatment at each state can be identified to maximize the
long-term return. However, the state-value table will
change if the policy changed.

State-value function for a specified policy

The above function returns a matrix of state-values
corresponding to a random policy. It is also interesting
to estimate state-value for a given policy. A given policy
specifies a treatment option for each of the states.

> policy_evaluate <- function(states, PolicyInd,

+ gamma = 0.95, valueMap, numIterations = 5000) {

+ for (ii in 1:numIterations) {

+ delta = 0

+ for (jj in 1:(gridSize * gridSize)) {

+ weightedRewards = 0

+ state = as.numeric(states[jj,

+])

+ if (length(unique(as.vector(PolicyInd))) ==

+ 1) {

+ for (action in actions) {

+ for (mm in 1:(3 * 3)) {

3721Annals of Palliative Medicine, Vol 10, No 4 April 2021

© Annals of Palliative Medicine. All rights reserved. Ann Palliat Med 2021;10(4):3715-3725 | http://dx.doi.org/10.21037/apm-20-2084

+ moveInd <- moveIndMatrix[mm,

+]

+ NextStepReturn <- nextStep(state,

+ action, moveInd)

+ nextPosition <- NextStepReturn[[1]]

+ reward <- NextStepReturn[[2]]

+ transPro <- NextStepReturn[[3]]

+ weightedRewards = weightedRewards +

+ 0.25 * transPro * (reward +

+ gamma * valueMap[nextPosition[1],

+ nextPosition[2]])

+ }

+ }

+ } else {

+ # use the current greedy policy

+ action = PolicyInd[state[1],

+ state[2]]

+ for (mm in 1:(3 * 3)) {

+ moveInd <- moveIndMatrix[mm,

+]

+ NextStepReturn <- nextStep(state,

+ action, moveInd)

+ nextPosition = NextStepReturn[[1]]

+ reward = NextStepReturn[[2]]

+ transPro <- NextStepReturn[[3]]

+ weightedRewards = weightedRewards +

+ transPro * (reward +

+ gamma * valueMap[nextPosition[1],

+ nextPosition[2]])

+ }

+ }

+ valueMap1[state[1], state[2]] = weightedRewards

+ delta = max(delta, abs(weightedRewards -

+ valueMap[state[1], state[2]]))

+ }

+ valueMap <- valueMap1

+ if (delta < 0.01) {

+ break

+ }

+ }

+ return(valueMap)

+ print(valueMap)

+ }

For example, we can define an arbitrary policy in a 4×4
grid and calculates the state-value function.

> PolicyInd = matrix(rep("none", gridSize *

+ gridSize), nrow = gridSize)

> PolicyInd[c(2, 3), c(1, 4)] <- "vaso"

> PolicyInd[c(2, 3), c(2, 3)] <- "fluid"

> PolicyInd

[,1] [,2] [,3] [,4]

[1,] "none" "none" "none" "none"

[2,] "vaso" "fluid" "fluid" "vaso"

[3,] "vaso" "fluid" "fluid" "vaso"

[4,] "none" "none" "none" "none"

> policy_evaluate(states, PolicyInd, valueMap = valueMap)

[,1] [,2] [,3] [,4]

[1,] -19.812121 -19.812121 -19.812121 -19.81212

[2,] -1.123072 -3.634555 -7.077458 -19.81212

[3,] -1.311871 2.514287 -8.215748 -19.81212

[4,] 19.812121 -4.842859 -13.785760 -19.81212

The state-values of the current policy is different from
that of the random policy. But the values at terminal states
are all the same because actions have no effect on terminal
states.

Results

Policy improvement

The purpose of computing the state-value function is to
find a better policy. The state-action value function is
used to address this problem. This value can be thought of
selecting a in s and following policy π thereafter.

() ()
() ()
1 1

,

| ,,

, | ,
π π γ

γ

+ +

′

 + = = 
=

=

 + ∑
t k t t

k

t

s r

R v S S s A aq s a

p s r s a r v s



	
[4]

3722 Zhang et al. DP for sepsis resuscitation

© Annals of Palliative Medicine. All rights reserved. Ann Palliat Med 2021;10(4):3715-3725 | http://dx.doi.org/10.21037/apm-20-2084

If () (),q s a v sπ π≥ , it will be better to select a in s than
follow the policy π all the time. The policy improvement
theorem is described as follows in Eq. [5]. Suppose there are
two deterministic policies π1 and π2 such that for all s S∈ ,

()() ()
1 12,q s s v sπ ππ ≥ , then π2 is better than or equal to π1.

The greedy policy can be the policy to maximize the state-
action value at each iterative step.

() ()

()

() (),

1 1

argmax

argmax | ,

argm

,

,ax , |

π

π

π

π

γ

γ

′

+ + + ==

′ ′ = +

= 

∑



a

t t t t
a

greedy

sa r

s q s a

p s r s a r v s

R v S S s A a

	

[5]

The greedy policy takes the action that maximize the q
value at short time, but it is not necessarily the best action in
the long run. The greedy policy for each state under a given
state-value table can be implemented with the following

_ ()greedify policy function. Note that this function will not
change the state-value table. It returns an updated policy
for one state. Then the _ ()improve policy function improves
policy over all states, except for the terminal states.

> # Compute the best action in each state

> greedify_policy <- function(state, PolicyInd,

+ gamma = 0.95, valueMap) {

+ q_values <- rep(0, length(actions))

+ idx = 1

+ for (action in actions) {

+ for (mm in 1:(3 * 3)) {

+ moveInd <- moveIndMatrix[mm,

+]

+ NextStepReturn <- nextStep(state,

+ action, moveInd)

+ nextPosition = NextStepReturn[[1]]

+ reward = NextStepReturn[[2]]

+ transPro <- NextStepReturn[[3]]

+ q_values[idx] = q_values[idx] +

+ transPro * (reward + gamma *

+ valueMap[nextPosition[1],

+ nextPosition][2])

+ }

+ idx = idx + 1

+ }

+ # Find the index of the action for which

+ # the q_value is

+ indmax = which(q_values == max(q_values))

+ PolicyInd[state[1], state[2]] = actions[indmax]

+ return(PolicyInd)

+ }

>

> improve_policy <- function(PolicyInd, valueMap,

+ gamma = 0.95) {

+ policy_stable = TRUE

+ for (jj in c(2, 3, 6:8, 10:12)) {

+ state = as.numeric(states[jj,])

+ old <- PolicyInd[state[1], state[2]]

+ # Greedify policy for state

+ PolicyInd <- greedify_policy(state,

+ PolicyInd, gamma, valueMap)

+ if (!identical(PolicyInd[state[1],

+ state[2]], old)) {

+ policy_stable = FALSE

+ }

+ }

+ return(list(PolicyInd, policy_stable))

+ }

Let’s see an example to better understand the above two
functions.

> # The current policy

> PolicyInd

[,1] [,2] [,3] [,4]

[1,] "none" "none" "none" "none"

[2,] "vaso" "fluid" "fluid" "vaso"

[3,] "vaso" "fluid" "fluid" "vaso"

[4,] "none" "none" "none" "none"

> valueMapExample <- policy_evaluate(states,

+ PolicyInd, gamma = 0.95, valueMap, numIterations = 5000)

> valueMapExample

3723Annals of Palliative Medicine, Vol 10, No 4 April 2021

© Annals of Palliative Medicine. All rights reserved. Ann Palliat Med 2021;10(4):3715-3725 | http://dx.doi.org/10.21037/apm-20-2084

[,1] [,2] [,3] [,4]

[1,] -19.812121 -19.812121 -19.812121 -19.81212

[2,] -1.123072 -3.634555 -7.077458 -19.81212

[3,] -1.311871 2.514287 -8.215748 -19.81212

[4,] 19.812121 -4.842859 -13.785760 -19.81212

> improve_policy(PolicyInd, valueMap = valueMapExample)

[[1]]

[,1] [,2] [,3] [,4]

[1,] "none" "none" "none" "none"

[2,] "vaso" "both" "both" "vaso"

[3,] "both" "fluid" "fluid" "vaso"

[4,] "none" "fluid" "fluid" "none"

##

[[2]]

[1] FALSE

The results show that the updated greedy policy is
different from the initial policy. For example, the initial
policy adopts “fluid” intervention in state (2,2), while the
update policy adopts “both” intervention in this state.

Policy iteration

The purpose of policy iteration is to iteratively improve the
policy π given the constantly updating state-value tables vπ.
The process of the policy iteration can be written as:

	 0 10 1 2 * *π ππ π π π→ → → → → → →

I I IE E E E
v v v 	

[6]

The policy evaluation and improvement intersect
with each other and the algorithm can finally achieve
a converged optimal policy *π and value function *v .
The policy iteration process can be implemented with
the following code. Except for the first policy evaluation
which starts from an initial value map with all 0 input, each
subsequent policy evaluation is started from the value map
of the previous policy.

> policy_iteration <- function(gamma = 0.95,

+ theta) {

+ valueMap = matrix(rep(0, gridSize * gridSize),

+ nrow = gridSize)

+ PolicyInd = matrix(rep("none", gridSize *

+ gridSize), nrow = gridSize)

+ policy_stable = FALSE

+ while (!policy_stable) {

+ valueMap = policy_evaluate(states,

+ PolicyInd, valueMap = valueMap)

+ ImpPolicy <- improve_policy(PolicyInd,

+ valueMap)

+ PolicyInd = ImpPolicy[[1]]

+ policy_stable = ImpPolicy[[2]]

+ }

+ return(list(valueMap, PolicyInd))

+ }

> theta = 0.1

> policyIter <- policy_iteration(theta)

> policyIter

[[1]]

[,1] [,2] [,3] [,4]

[1,] -19.97184 -19.97184 -19.971839 -19.97184

[2,] 12.94852 10.40723 2.198744 -19.97184

[3,] 16.89435 12.71012 3.121192 -19.97184

[4,] 19.97184 12.24205 2.654893 -19.97184

##

[[2]]

[,1] [,2] [,3] [,4]

[1,] "none" "none" "none" "none"

[2,] "both" "both" "both" "none"

[3,] "both" "fluid" "both" "none"

[4,] "none" "fluid" "fluid" "none"

The above output shows the optimal value function *v
and optimal policy *π . At the terminal states, the initial
“none” treatment is not changed during policy iteration.
The optimal treatment strategy such as “both” and “fluid”
are employed in other non-terminal states.

Discussion

This article illustrates how DP can be used to solve a
clinical problem. We show that DP is a potential useful
tool to tailor treatment strategy to patients with different

3724 Zhang et al. DP for sepsis resuscitation

© Annals of Palliative Medicine. All rights reserved. Ann Palliat Med 2021;10(4):3715-3725 | http://dx.doi.org/10.21037/apm-20-2084

conditions/states. The key concepts of DP include policy
evaluation, policy improvement and policy iteration.
The final output of the DP is an optimal policy that
maximizes the final outcome. The complexity of septic
shock is the rapidly changing states over the disease
course (10). Clinicians need to make rapid decisions
to these changing states. There have been numerous
clinical practice guidelines for the management of septic
shock, but most of these guidelines provide uniform
recommendation for all septic shock patients, failing to
account for the heterogeneity of individual patients (11-13).
On the other hand, many literatures demonstrated that
sepsis is a heterogeneous syndrome that the One-size-fit-
all paradigm is not working perfectly (14-17). Thus, it is
mandatory to utilize the concept of precision medicine for
the management of septic shock. The potential implications
in clinical practice of the DP algorithm are that it can help
to tailor resuscitation strategy conditional on patients’
current state. Remember that all states are assigned a
value to indicate next appropriate action to take. However,
DP is not widely used in real world setting because of its
computational complexity. In reality, the state space may
be formed by hundreds of features that the size of the
feature space is intractable. Another limitation of DP is
the requirement of a known MDP, which is usually not the
case in clinical researches. Thus, we need more advanced
methods such as deep RL, or other methods based on
temporal difference. However, the key concept of RL can
be captured by DP, as illustrated in this article.

Conclusions

This article illustrates how DP can be used to solve a
clinical problem. We show that DP is a potential useful
tool to tailor treatment strategy to patients with different
conditions/states. Potential audience of the paper are those
who are interested in using DP for solving clinical problems
with dynamic changing states.

Acknowledgments

Funding: The study was supported by the Key Laboratory
of Emergency and Trauma (Hainan Medical University),
Ministry of Education (Grant.KLET-202017), the Key
Laboratory of Tropical Cardiovascular Diseases Research
of Hainan Province (Grant.KLTCDR-202001), and
Health Science and Technology Plan of Zhejiang Province
(2021KY745).

Footnote

Conflicts of Interest: All authors have completed the ICMJE
uniform disclosure form (available at http://dx.doi.
org/10.21037/apm-20-2084). The authors have no conflicts
of interest to declare.

Ethical Statement: The authors are accountable for all
aspects of the work in ensuring that questions related
to the accuracy or integrity of any part of the work are
appropriately investigated and resolved. Since the study did
not involve real human subjects, ethical approval was waived
for the study.

Open Access Statement: This is an Open Access article
distributed in accordance with the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with
the strict proviso that no changes or edits are made and the
original work is properly cited (including links to both the
formal publication through the relevant DOI and the license).
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Rahmanian H, Warmuth MK. Online Dynamic
Programming. Vol. cs.LG, arXiv.org 2017.

2.	 Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis
Campaign: International Guidelines for Management
of Sepsis and Septic Shock: 2016. Intensive Care Med
2017;43:304-77.

3.	 Hernández G, Ospina-Tascón GA, Damiani LP, et al.
Effect of a Resuscitation Strategy Targeting Peripheral
Perfusion Status vs Serum Lactate Levels on 28-Day
Mortality Among Patients With Septic Shock: The
ANDROMEDA-SHOCK Randomized Clinical Trial.
JAMA 2019;321:654-64.

4.	 Elbouhy MA, Soliman M, Gaber A, et al. Early Use of
Norepinephrine Improves Survival in Septic Shock: Earlier
than Early. Arch Med Res 2019;50:325-32.

5.	 Rivers E, Nguyen B, Havstad S, et al. Early goal-directed
therapy in the treatment of severe sepsis and septic shock.
N Engl J Med 2001;345:1368-77.

6.	 Su L, Tang B, Liu Y, et al. P(v-a)CO2/C(a-v)O2-directed
resuscitation does not improve prognosis compared with
SvO2 in severe sepsis and septic shock: A prospective
multicenter randomized controlled clinical study. J Crit

http://dx.doi.org/10.21037/apm-20-2084
http://dx.doi.org/10.21037/apm-20-2084
https://creativecommons.org/licenses/by-nc-nd/4.0/

3725Annals of Palliative Medicine, Vol 10, No 4 April 2021

© Annals of Palliative Medicine. All rights reserved. Ann Palliat Med 2021;10(4):3715-3725 | http://dx.doi.org/10.21037/apm-20-2084

Care 2018;48:314-20.
7.	 ProCESS Investigators, Yealy DM, Kellum JA, et al. A

randomized trial of protocol-based care for early septic
shock. N Engl J Med 2014;370:1683-93.

8.	 Sutton RS, Barto AG. Reinforcement Learning: An
Introduction. Second. The MIT Press, 2018.

9.	 Angus DC, van der Poll T. Severe sepsis and septic shock.
N Engl J Med 2013;369:840-51.

10.	 Marik PE, Linde-Zwirble WT, Bittner EA, et al. Fluid
administration in severe sepsis and septic shock, patterns
and outcomes: an analysis of a large national database.
Intensive Care Med 2017;43:625-32.

11.	 Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis
Campaign: international guidelines for management of
severe sepsis and septic shock, 2012. Intensive Care Med
2013;39:165-228.

12.	 Perner A, Junttila E, Haney M, et al. Scandinavian clinical
practice guideline on choice of fluid in resuscitation of
critically ill patients with acute circulatory failure. Acta
Anaesthesiol Scand 2015;59:274-85.

13.	 Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis
Campaign: international guidelines for management
of severe sepsis and septic shock: 2008. Crit Care Med
2008;36:296-327.

14.	 Burnham KL, Davenport EE, Radhakrishnan J, et al.
Shared and Distinct Aspects of the Sepsis Transcriptomic
Response to Fecal Peritonitis and Pneumonia. Am J Respir
Crit Care Med 2017;196:328-39.

15.	 Davenport EE, Burnham KL, Radhakrishnan J, et al.
Genomic landscape of the individual host response and
outcomes in sepsis: a prospective cohort study. Lancet
Respir Med 2016;4:259-71.

16.	 Wiersema R, Jukarainen S, Vaara ST, et al. Two
subphenotypes of septic acute kidney injury are associated
with different 90-day mortality and renal recovery. Crit
Care 2020;24:150.

17.	 Zhang Z, Navarese EP, Zheng B, et al. Analytics with
artificial intelligence to advance the treatment of
acute respiratory distress syndrome. J Evid Based Med
2020;13:301-12.

Cite this article as: Zhang Z, Zhang X, Gu S, Xu X, Jiang W,
Lv C, Zheng S. Dynamic programming for solving a simulated
clinical scenario of sepsis resuscitation. Ann Palliat Med
2021;10(4):3715-3725. doi: 10.21037/apm-20-2084

