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Background: Malignant obstructive jaundice (MOJ) leads to hyperbilirubinemia and systemic 
pathophysiological changes. The main clinical treatments for MOJ include radical pancreatoduodenectomy, 
palliative surgical treatment, and minimally invasive treatment, which can relieve biliary obstruction, drain 
bile, reduce jaundice, and improve liver function. In rat models, hepatic exposure to endotoxin resulted in 
rapid increases in biliary and plasma lipoprotein-associated phospholipase A2 (Lp-PLA2) levels, and our 
previous study revealed that Lp-PLA2 activity was strongly associated with liver damage. The present study 
aimed to clarify the serum Lp-PLA2 activity changes and evaluate the associations between Lp-PLA2 activity 
and laboratory parameters in MOJ patients preoperatively and postoperatively.
Methods: Twenty-one patients with MOJ were enrolled in this prospective study. Lp-PLA2 activity and 
other laboratory parameters were analyzed using a Hitachi 7600 automatic biochemical analyzer. Spearman 
correlation coefficients, percent differences, and dynamic difference plots were used to evaluate the changes 
in preoperative and postoperative Lp-PLA2 activity and the associations of Lp-PLA2 activity with other 
laboratory parameters.
Results: The postoperative Lp-PLA2 activity at 1 day [646 (range, 175–1,025) U/L], 1 week [419 (range, 
144–949) U/L], and day of hospital discharge (347 (range, 165–698) U/L) differed significantly from the 
preoperative baseline activity [636 (range, 172–1,664) U/L; P<0.05 for all]. Lp-PLA2 activity was correlated 
with total bilirubin (TB) at specific time points (P<0.05 for all). The percent differences and dynamic 
difference graphs revealed that Lp-PLA2 activity, alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), and TB gradually decreased after biliary obstruction was relieved by surgical treatment.
Conclusions: Lp-PLA2 activity in MOJ patients was associated with biliary obstruction and liver damage. 
Serum Lp-PLA2 can be used as a novel indicator for biliary obstruction severity and treatment monitoring.
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Introduction 

Malignant obstructive jaundice (MOJ) is frequently caused 
by malignant tumors, including primary carcinoma of the 
liver, carcinoma of the head of the pancreas, gallbladder 
cancer, cholangiocarcinoma, and periampullary tumor 
(1-5). MOJ leads to hyperbilirubinemia and systemic 
pathophysiological changes, such as gastric mucosal 
injury, liver and kidney failure, coagulation dysfunction, 
and immune hypofunction (2-5). The mechanism of the 
associated injury is complex, and involves endotoxemia, 
oxygen free radicals, cytokines, bile components, and 
other factors (6). Biliary obstruction can occur in any part 
of the biliary system (7). The diagnosis of obstructive 
jaundice mainly depends on clinical manifestations, 
biochemical marker detection, tumor marker detection, 
and imaging examinations [including ultrasound, computed 
tomography, magnetic resonance imaging, magnetic 
resonance cholangiopancreatography, and endoscopic 
retrograde cholangiopancreatography (ERCP)] (7-10). 
These imaging examinations are mainly used to determine 
the etiology, location, nature (benign/malignant), and 
degree of severity of the obstruction (9,10). At present, 
the main clinical treatments for MOJ include radical 
pancreatoduodenectomy, palliative surgical treatment, and 
minimally invasive treatment [ERCP, endoscopic nasobiliary 
drainage (ENBD), endoscopic retrograde biliary drainage, 
endoscopic metal biliary endoprosthesis, and percutaneous 
transhepatic cholangiography and drainage (PTCD)]  
(7,11-14). These treatments can relieve biliary obstruction, 
drain bile, reduce jaundice, and improve liver function.

Lipoprotein-associated phospholipase A2 [Lp-PLA2; 
also known as platelet-activating factor acetylhydrolase 
(PAF-AH)] is mainly secreted by macrophages and catalyzes 
hydrolysis of the sn-2 ester bond of glycerophospholipids 
to release lysophosphatidylcholine (lysoPC) and oxidized 
nonesterified fatty acid (15,16). In humans, Lp-PLA2 
circulates in its active form as a complex with low-density 
lipoprotein (LDL) and high-density lipoprotein (17). After 
LDL oxidation by reactive oxygen radicals, Lp-PLA2/
ox-LDL complexes are recognized by phospholipase A2 
receptor (PLA2R) on the macrophage membrane, and enter 
the cells to produce free fatty acid and lysophosphatide, 
while s imultaneously promoting macrophage M1 
polarization and M1 macrophage release of inflammatory 
factors like tumor necrosis factor (TNF)-α and interleukin 
(IL)-6 (18-21).  Under ox-LDL-induced oxidative 
stress, Lp-PLA2 silencing was shown to protect against 

oxidative stress and cell apoptosis in macrophages (22). In 
lipopolysaccharide (LPS)-injected rats, hepatic exposure to 
endotoxin led to rapid increases in biliary and plasma Lp-
PLA2 levels (23). Furthermore, plasma Lp-PLA2 activity 
was strongly associated with liver damage in our previous 
study (24). 

The above research suggests that Lp-PLA2 activity may 
have important roles in macrophage polarization, oxidative 
stress, and inflammatory mediator release. MOJ is also 
correlated with these factors. Therefore, we speculate that 
Lp-PLA2 may be related to the injury caused by MOJ. 
The present study aimed to investigate the associations 
of dynamic changes in Lp-PLA2 activity and laboratory 
parameters in patients with MOJ before and after treatment.

We present the following article in accordance with the 
STROBE Statement reporting checklist (available at http://
dx.doi.org/10.21037/apm-20-133).

Methods

Patients

Twenty-one MOJ patients who attended the Department of 
Hepatobiliary and Pancreatic Surgery, The First Affiliated 
Hospital, School of Medicine, Zhejiang University, China, 
between August 2016 and November 2017 were enrolled 
in this prospective study. The patients comprised 15 males 
and 6 females aged 44–87 years (mean age: 66.1±11.4 years). 
Of the 21 patients, 1 was diagnosed with colorectal cancer 
with hepatic metastasis, 8 with cholangiocarcinoma, 6 with 
pancreatic cancer, 4 with duodenal cancer, 1 with carcinoma 
of ampulla, and 1 with cholecystolithiasis. Regarding 
treatments, 15 (71.4%) underwent surgical resection of 
local lesion, 2 (9.5%) underwent drainage by PTCD, 2 
(9.5%) underwent stent insertion by PTCD, 1 (4.8%) 
underwent bile duct stone extraction by ERCP, and 1 (4.8%) 
underwent ENBD by ERCP. Before and after the surgical 
or interventional operation, blood samples were collected at 
specific time points. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013) and 
the participants gave informed consent before taking part. 
The study was approved by the Ethics Committee of The 
First Affiliated Hospital of Zhejiang University (Approval 
No. 2017-082).

Biochemical indicator assays 

Blood concentrations of the biochemical indicators were 
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measured just before the operation, and at 1 day, 1 week,  
and day of hospital discharge after the surgical or 
interventional operation. All specimens for blood indicators 
and Lp-PLA2 activity measurements were collected by 
venipuncture into 5-mL drying Vacuette vacutainers 
(Greiner Bio-One GmbH, Kremsmunster, Austria) in 
the morning after a 12-h fast on day 2 after admission. 
After the samples were sent to the laboratory, serum was 
isolated by centrifugation (10 min, 3,000 ×g) and preserved 
at −80 ℃ until analysis. Lp-PLA2 activity, total protein 
(TP), albumin (ALB), alkaline phosphatase (ALP), alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), 
gamma-glutamyltransferase (GGT), total bilirubin (TB), 
direct bilirubin (DB), total bile acid (TBA), amylase (Amy), 
and high-sensitivity C-reactive protein (Hs-CRP) levels 
were measured with a Hitachi 7600 automatic biochemical 
analyzer (Hitachi, Tokyo, Japan) using Roche reagents 
(Roche Diagnostics, Mannheim, Germany) for TP, ALB, 
ALT, AST, GGT, TB, and DB, Shengsuoyoufu reagents 
(SSUF, Shanghai, China) for Hs-CRP, TBA, and Amy, 
and an Auto LP-PLA2 Kit (Diasys, Holzheim, Germany) 
for Lp-PLA2 activity measurements. All biochemical 
parameters were conducted in the same laboratory and the 
laboratory quality control is within the control range.

Statistical analysis

Statistical analyses were performed using SPSS version 
22.0 software (SPSS Inc., Chicago, IL, USA). Data were 
expressed as mean and standard deviation for continuous 
variables, and as median and range for categorical variables. 
Spearman rank correlation analysis was used to evaluate 
the relationships between Lp-PLA2 activity and other 
parameters. The statistical significance of differences in 
postoperative data at 1 day, 1 week, and day of hospital 
discharge relative to the preoperative baseline values was 
evaluated by repeated-measures analysis of variance. To 
examine the differences in Lp-PLA2 activity and other 
parameters, percent differences were calculated by the 
following equation: (postoperative value − preoperative 
baseline value) ×100%/baseline value. Box plots were 
created to demonstrate the Lp-PLA2 activity and levels 
of enzyme indicators. Dynamic difference plots of the 
percent changes in Lp-PLA2 activity and other parameters 
were drawn with the percent changes on the Y-axis and the 
postoperative time points on the X-axis. Scatter plots for 
the four Lp-PLA2 activity measurements in each patient 

were created, with 0–21 representing the 21 patients on 
the X-axis, and the Lp-PLA2 activity levels on the Y-axis. 
Values of P<0.05 were considered statistically significant. 

Results

Clinical characteristics of the patients at specific time points

The levels of TP, ALB, ALP, ALT, AST, GGT, TB, 
DB, TBA, Amy, Lp-PLA2 activity, and Hs-CRP before 
the operation, and at 1 day, 1 week, and day of hospital 
discharge after the operation are shown in Table 1. The 
levels of TP, ALB, ALP, ALT, AST, GGT, TB, DB, TBA, 
Lp-PLA2 activity, and Hs-CRP differed significantly 
among the four paired time points (P<0.05 for all). The 
levels of ALP, AST, GGT, TB, DB, TBA, and Lp-PLA2 
activity at 1 day, 1 week, and day of hospital discharge after 
the operation differed significantly from the baseline levels 
before the operation (P<0.05 for all). The levels of TB, 
DB, and Lp-PLA2 activity at 1 week and day of hospital 
discharge after the operation differed significantly from 
the values at 1 day after the operation (P<0.05 for all). The 
levels of ALB, ALP, ALT, AST, GGT, TB, DB, and Hs-
CRP at day of hospital discharge differed significantly from 
the values at 1 week postoperatively (P<0.05 for all). As 
shown in Figure 1, the levels of enzyme indicators (ALP, 
ALT, AST, GGT, Lp-PLA2), bilirubin indicators (TB, DB), 
and TBA gradually decreased, while the Hs-CRP level 
initially increased and then decreased.

Correlation analyses between Lp-PLA2 activity and 
laboratory parameters 

Spearman correlation analysis was employed to determine 
the correlations between Lp-PLA2 activity and laboratory 
parameters at the preoperative and postoperative time 
points. The results revealed that Lp-PLA2 activity at 
baseline was significantly positively correlated with TB 
(r=0.463, P=0.035), but not correlated with TP, ALB, ALP, 
ALT, AST, GGT, DB, TBA, Amy, and Hs-CRP (P>0.05 
for all). Lp-PLA2 activity at 1 day postoperatively was 
significantly negatively correlated with Hs-CRP (r=−0.600, 
P=0.004), positively correlated with TB (r=0.558, P=0.009) 
and DB (r=0.509, P=0.019), and not correlated with other 
parameters (P>0.05 for all). Lp-PLA2 activity at 1 week 
postoperatively was significantly negatively correlated with 
Hs-CRP (r=−0.605, P=0.005) and positively correlated with 
TB (r=0.559, P=0.008) and DB (r=0.455, P=0.038). Finally, 
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Lp-PLA2 activity at day of hospital discharge was not 
correlated with other parameters (P>0.05 for all). Thus, we 
found that Lp-PLA2 activity was correlated with TB, DB, 
and Hs-CRP at specific time points. To further examine the 
correlations, we calculated the difference rates and drew 
dynamic difference graphs to show the dynamic changes.

Dynamic changes in Lp-PLA2 activity and relevant 
parameters at specific preoperative and postoperative time 
points

The dynamic changes in the three difference rates for the 
parameters are shown in Table 2. D1, D2, and D3 for Lp-
PLA2, ALP, ALT, AST, GGT, TB, DB, and TBA gradually 
decreased, meaning that the levels of these indicators 
gradually decreased after biliary obstruction was relieved 
by surgical treatment. D1 and D2 of Hs-CRP were both 
increased, while D3 decreased. The dynamic difference 
graphs for ALP, ALT, AST, GGT, TB, DB, TBA, and Lp-
PLA2 are shown in Figure 2. The visual dynamic changes 
in these parameters and the respective changes at different 
points also showed that these parameters gradually 
decreased after biliary obstruction was relieved by surgical 
or interventional treatment.

Associations of clinical outcomes and Lp-PLA2 activity 

After pancreatoduodenectomy or minimally invasive 
treatment combined with medication (mainly ursodeoxycholic 
acid), the biliary obstruction in the 21 patients was alleviated 
and they were discharged from the hospital. The Lp-
PLA2 activity measurements for the individual patients are 
shown in Figure 3. The data clearly showed that the fourth 
Lp-PLA2 activity measurements in most patients were  
<600 U/L [close to the upper limit of the normal 
reference range (25)] and lower than the previous three 
measurements. 

Discussion

In the present study, we investigated the associations 
between serum Lp-PLA2 activity dynamic changes and 
biliary obstruction in MOJ patients. Lp-PLA2 activity 
was associated with TB at all time points, and the 
difference rates and dynamic difference graphs showed that 
postoperative Lp-PLA2, ALP, ALT, AST, GGT, TB, DB, 
and TBA gradually decreased after biliary obstruction was 
relieved by surgical or interventional treatment.

The main pathological factor caused by MOJ is 

Table 1 Clinical characteristics of the patients at specific time points

Parameters Before the operation 1 day 1 week Day of hospital discharge P

TP (g/L) 60.3±7.1 51.7±6.7* 54.9±6.8* 62.5±9.8
#&

 <0.001

ALB (g/L) 34.7±5.5 31.3±4.5* 33.8±4.4 37.0±4.33
#&

0.002

ALP (U/L) 411 [216–1,532] 196 [112–1,017]* 205 [124–706]* 125 [61–318]*
#&

<0.001

ALT (U/L) 83 [17–468] 77 [24–416]* 51 [11–403] 26 [9–149]*
#&

<0.001

AST (U/L) 90 [18–231] 61 [22–440]* 48 [18–475]* 26 [7–217]*
# &

<0.001

GGT (U/L) 627 [33–1,530] 170 [49–682]* 134 [33–703]* 76 [23–204]*
#&

<0.001

TB (μmol/L) 220 [72–477] 151 [40–412]* 70 [14–418]*
#

19 [6–709]*
#&

<0.001

DB (μmol/L) 177 [44–374] 101 [30–332]* 47 [9–309]*
#

9 [3–519]*
#&

<0.001

TBA (μmol/L) 130 [4–264] 7 [3–224]* 9 [2–70]* 9 [6–103]* 0.001

Amy (U/L) 48 [14–308] 85 [20–486] 62 [4–185] 46 [6–215]
#

0.138

CRP (mg/L) 11.8 [3.4–104] 68.5 [6.9–155.2]* 53.0 [1.3–284.9]* 14.5 [0.5–96.8]
#&

<0.001

LP-PLA2 (U/L) 636 [172–1,664] 646 [175–1,025]* 419 [144–949]*
#

347 [165–698]*
#

<0.001

*, the values at 1 day, 1 week, or day of hospital discharge after the operation were compared with the baseline values before the 
operation. 

#
, the values at 1 week or day of hospital discharge after the operation were compared with values at 1 day after the operation. 

&
, the values at day of hospital discharge were compared with the values at 1 week after the operation.

 
TP, total protein; ALB, albumin; 

ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyltransferase; TB, total 
bilirubin; DB, direct bilirubin; TBA, total bile acid; Amy, amylase; CRP, C-reactive protein.
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enterogenous endotoxemia (6). Endotoxin is a type of LPS, 
a cell wall component of Gram-negative bacteria (26).  
In MOJ, the lack of bile salt, impaired intestinal mucosal 
barrier, and disrupted intestinal immune barrier function 
result in absorption of endotoxin into the liver through 
the portal vein (6,27,28). In addition, the activity of liver 
Kupffer cells (KCs) is inhibited, and their functions 
in phagocytosis and cell killing are impaired, meaning 
that KCs cannot effectively remove endotoxin (29,30). 
Consequently, endotoxemia occurs, and the invading 
endotoxin activates KCs to induce their secretion of 

various inflammatory factors, such as TNF-α, IL-6, and 
Lp-PLA2, that mediate inflammatory reactions and cause 
body damage (31-33). Furthermore, the activated KCs 
release large amounts of oxygen free radicals that can 
mediate liver damage in MOJ (31). Endotoxin also induces 
KCs to produce nitric oxide synthase (iNOS), nitric oxide, 
malondialdehyde (MDA), and reactive oxygen species (ROS) 
(34-38). Taken together, these findings suggest that KCs 
mediate liver damage by secreting oxygen free radicals and 
producing oxidative stress.

LPS stimulation can affect Lp-PLA2 expression. Previous 

Figure 1 Box plots of Lp-PLA2 activity and levels of enzyme indicators at the examined time points. Y-axis: Lp-PLA2 activity, and ALP, 
ALT, AST, GGT, TB, DB, TBA, and CRP levels. X-axis: 0, preoperative; 1, postoperative 1 day; 2, postoperative 1 week; 3, day of hospital 
discharge. ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyltransferase; 
TB, total bilirubin; DB, direct bilirubin; TBA, total bile acid; CRP, C-reactive protein.
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studies showed that Lp-PLA2 expression was increased in 
a murine macrophage cell line and human THP-1 cells 
through the mitogen-activated protein pathway after LPS 
exposure (39,40). Howard et al. (19) reported a 2-fold 
increase in plasma Lp-PLA2 activity after LPS exposure 
for 24 hours in a rat model. Svetlov et al. (41) described a 
maximal 4–5-fold increase in bile Lp-PLA2 activity after 
LPS infusion for 2.5 hours, and found that plasma Lp-
PLA2 activity was significantly elevated after LPS exposure 
for 18 hours. Sun et al. (42) demonstrated that LPS, 
TNF-α, and ROS levels stimulated an increase in Lp-PLA2 
expression. Furthermore, the relationship between LPS and 
Lp-PLA2 was closely related to KCs. Howard et al. (19) 
confirmed that the rat liver responds to LPS exposure with 
increased Lp-PLA2 mRNA and protein expression mainly 
in the resident KCs in the liver, rather than hepatocytes or 
endothelial cells, and that the secretion rate of Lp-PLA2 by 
KCs was 20–25 times higher than that by hepatocytes. LPS 
can activate Toll-like receptor 4 (TLR4) and CD14 on the 
KCs membrane (23,43). KCs subsequently secrete Lp-PLA2 
into the peripheral blood or surrounding tissue, where 
it releases lysoPC and fatty acid (20,44). In turn, lysoPC 
increases certain inflammatory cytokine (IL-1β, IL-6,  
TNF-α) levels in a concentration-dependent manner 
(20,44). Meanwhile, Shi et al. (44) found Lp-PLA2 activity 

mediated leukocyte activation and inflammatory responses in 
an in vitro cell model. Because PLA2R is expressed on KCs 
(19-21), we speculate that Lp-PLA2 enters KCs through this 
receptor to mediate leukocyte activation and inflammatory 
responses and promote macrophage inflammatory 
M1 polarization, leading to M1 macrophage release  
of inflammatory factors like TNF-α and IL-6 (44-46).

Other studies found that Lp-PLA2 was closely related 
to oxidative stress in KCs (42,47). Oxidative stress plays an 
important role in the development of diseases (42). Some 
medications against oxidative stress and Lp-PLA2 inhibitors 
inhibited KCs activation and reduced the inflammatory 
process, thereby reducing liver damage and enhancing 
liver recovery (42,47,48). Resveratrol inhibited Lp-PLA2 
expression in macrophages and this inhibition was associated 
with reductions in inflammation and ROS levels (42).  
Simvastatin inhibited oxidative stress by improving SOD 
functional activity, increasing GSH-Px and HO-1, and 
decreasing MDA generation (47). Furthermore, simvastatin 
treatment significantly down-regulated LPS-induced Lp-
PLA2 (released by macrophages) mRNA and protein 
expression, and inhibited Lp-PLA2 activity in a dose- and 
time-dependent manner (39,40). darapladib is an Lp-PLA2-
specific inhibitor that decreased iNOS and intra-cellular 
adhesion molecule (ICAM)-1 expression in a rat model (48).  

Table 2 Difference rates for Lp-PLA2 activity and other parameters

Parameters D1 D2 D3

TP (g/L) −0.12 (−0.37 to 0.01) −0.11 (−0.31 to 0.1) 0.02 (−0.24 to 0.47)

ALB (g/L) −0.08 (−0.35 to 0.22) 0.02 (−0.32 to 0.25) 0.10 (−0.22 to 0.44)

ALP (U/L) −0.50 (−0.87 to 0.22) −0.54 (−0.89 to 1.45) −0.73 (−0.90 to −0.08)

ALT (U/L) −0.21 (−0.88 to 10.56) −0.56 (−0.95 to 4.43) −0.75 (−0.97 to 3.26)

AST (U/L) −0.32 (−0.81 to 9.73) −0.46 (−0.92 to 4.28) −0.69 (−0.96 to 1.41)

GGT (U/L) −0.48 (−0.91 to 1.28) −0.69 (−0.95 to 3.06) −0.84 (−0.97 to 0.86)

TB (μmol/L) −0.48 (−0.82 to 0.13) −0.68 (−0.91 to 0.07) −0.91 (−0.97 to 0.81)

DB (μmol/L) −0.54 (−0.81 to 0.12) −0.69 (−0.93 to 0.07) −0.94 (−0.98 to 0.80)

TBA (μmol/L) −0.88 (−0.98 to 0.61) −0.92 (−0.99 to 2.68) −0.91 (−0.98 to 4.42)

Amy (U/L) 0.21 (−0.79 to 17.0) 0.11 (−0.96 to 2.94) −0.17 (−0.95 to 3.57)

CRP (mg/L) 1.84 (−0.28 to 21.55) 1.64 (−0.85 to 13.89) −0.45 (−0.99 to 15.32)

LP-PLA2 (U/L) −0.25 (−0.56 to 1.07) −0.32 (−0.74 to 0.5) −0.45 (−0.86 to 0.94)

Three kinds of difference rates were examined: D1 = (value at 1 day postoperatively − baseline)/baseline; D2 = (value at 1 week 
postoperatively − baseline)/baseline; D3 = (value at day of hospital discharge − baseline)/baseline. TP, total protein; ALB, albumin; ALP, 
alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyltransferase; TB, total 
bilirubin; DB, direct bilirubin; TBA, total bile acid; Amy, amylase; CRP, C-reactive protein.

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sun S%5BAuthor%5D&cauthor=true&cauthor_uid=28608449
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shi Y%5BAuthor%5D&cauthor=true&cauthor_uid=16765356
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Zheng et al. (22) reported that Lp-PLA2 silencing 
protected against oxidative stress in human macrophages by 
downregulating ROS and MDA and increasing SOD.

Above all, Lp-PLA2 activity may be associated with 
biliary obstruction in MOJ patients, mainly through 
KC-mediated enterogenous endotoxemia and oxidative 
stress. In this study, we found that ALP, ALT, AST, GGT, 
TB, DB, TBA, and Lp-PLA2 activity were increased in 
MOJ patients preoperatively, and that Lp-PLA2 activity 
was correlated with TB and DB levels, reflecting liver 
damage. Similarly, our previous study showed that Lp-
PLA2 activity was significantly associated with TB in HBV 
patients with liver damage (24). Svetlov et al. (49) proposed 
that increased biliary and plasma Lp-PLA2 activity was 
involved in the hepatic response to endotoxic exposure in 

a rat model. It is clear that Lp-PLA2 activity can act as an 
indicator of MOJ-induced liver damage. We also found 
that Lp-PLA2 activity, ALP, ALT, AST, GGT, TB, DB, 
and TBA gradually decreased after biliary obstruction was 
relieved by surgical or interventional treatment, and were 
lowest at day of hospital discharge, which also indicated 
improvement in liver functions. This relationship between 
Lp-PLA2 activity and liver function was also observed in 
the following studies. Meade et al. (50) found that patients 
with chronic cholestasis, especially stage III or IV primary 
or secondary biliary cirrhosis or cholangiocarcinoma, 
exhibited increased serum Lp-PLA2 activity, while Lp-
PLA2 activity was reduced to normal or near-normal levels 
after liver transplantation with recovery of liver function. 
Thus, it is probable that the liver has an important role 

Figure 2 Dynamic difference graphs for Lp-PLA2 and biochemical indicators in 21 patients after operation. Lp-PLA2-1, ALP1, ALT1, 
AST1, GGT1, TB1, BD1, and TBA1: percentage changes at postoperative 1 day (D1). Lp-PLA2-2, ALP2, ALT2, AST2, GGT2, 
TB2, BD2, and TBA2: percentage changes at postoperative 1 week (D2). Lp-PLA2-3, ALP3, ALT3, AST3, GGT3, TB3, BD3, and 
TBA3: percentage changes at day of hospital discharge (D3). ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; GGT, gamma-glutamyltransferase; TB, total bilirubin; DB, direct bilirubin; TBA, total bile acid.
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in the regulation of serum Lp-PLA2 activity. Kamisako 
et al. (51) found that serum Lp-PLA2 activity increased 
in hyperbilirubinemia associated with liver cirrhosis, 
obstructive cholestasis, or acute hepatitis, and that Lp-
PLA2 activity decreased after remission in acute hepatitis 
and treatment in obstructive cholestasis. Thus, we speculate 
that LPS stimulates Lp-PLA2 to enter KCs in the liver, 
mediates leukocyte activation and inflammatory responses, 
and causes M1 macrophages to release inflammatory 
factors. After surgery or interventional treatment leading 
to obstruction relief and endotoxemia reduction, the liver 
inflammatory responses and liver injury begin to recover 
and KCs reduce their secretion of Lp-PLA2, leading to a 
gradual reduction in serum Lp-PLA2. By monitoring the 
dynamic changes in Lp-PLA2 activity in MOJ patients, 
we can observe the effects of surgery or interventional 
treatment in MOJ patients.

In summary, our findings revealed the dynamic changes 
in Lp-PLA2 activity in MOJ patients, and demonstrated 
that Lp-PLA2 activity was associated with biliary 
obstruction and liver damage and can be used as a novel 
indicator for severity of biliary obstruction and treatment 
monitoring. However, the small sample size is a limitation 
of the present study, and further studies are warranted to 
confirm our findings.
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